Supporting Temporal Queries on Clinical Relational Databases:
The S-WATCH-QL Language

Carlo Combi (§), Luca Missora and Francesco Pinciroli (°*)

§ Dipartimento di Matematica e Informatica, Universita’ degli Studi di Udine
° Dipartimento di Bioingegneria del Politecnico di Milano
* Centro di Teoria dei Sistemi del CNR, Milano

Due to the ubiquitous and special nature of time,
specially in clinical databases there’s the need of
particular temporal data and operators. In this paper
we describe S-WATCH-QL (Structured Watch Query
Language), a temporal extension of SQL, the
widespread query language based on the relational
model. S-WATCH-QL extends the well-known SQL
by the addition of: a) temporal data types that allow
the storage of information with different levels of
granularity; b) historical relations that can store
together both instantaneous valid times and intervals;
c) some temporal clauses, functions and predicates
allowing to define complex temporal queries.

INTRODUCTION

In medical informatics, the temporal dimension is
very important; it is basic either in the decision
making activity in diagnosis, therapy and prognosis,
or in the analysis of clinical data for scientific
purposes.!: 2 Clinical information consists both of
natural language sentences (such as anamneses,
therapies), and of quantitative parameters (heart rate,
systolic blood pressure). Temporal localization of
such data may be expressed by using different time
units. Granularity of temporal information is, in fact,
the accuracy or the unit of measure used for the
temporal axis (e.g. days, hours, minutes).2- 3 Some
attempts have been made to manage and store
temporal clinical information with different
granularity at the database level.3 4 5- 6 Besides the
need of using different time units, there are also many
other needs related to the temporal management of
clinical data. More precisely, in defining and
implementing S-WATCH-QL (Structured Watch
Query Language), we faced the following problems in
managing temporal clinical information.

a) compatibility with the flat relational model and
with SQL7; a large amount of clinical data is stored
in conventional relational databases. Temporal queries
on these data have to be performed. Temporal query
languages have to consider also flat data, containing
some user-defined temporal dimension.

b) global management of instant- and interval- valid
times with different granularities; a tuple’s valid time
represents the time during which the information
contained in the tuple is considered to be valid in the

0195—4210/96/$5.00 © 1996 AMIA, Inc.

527

modeled real-world.8 Usually in a relation valid times
are homogeneous both in granularity and in
instant/interval reference.®: 5 This is a limitation in
the clinical domain: in a clinical relation containing
descriptions of pathologies, for example,
instantaneous tuples (e.g. "myocardial infarction at
21:12 of March 16th, 1994") and interval-based tuples
(e.g. "atrial fibrillation on February 12th 1995 from
18:30:15 to 18:45:34") must co-exist.

¢) addition and enhancement of some specific clauses,
functions and predicates. Some capabilities are
required to consider temporal clinical data about
features like temporal proximity, temporal order,
patient state identification related to complex
temporal relationships between collected data. For
example, it is important the capability to observe data
by a window, having a predefined duration, moving
on the time axis (e.g. "find the patients having
measures of Hearth Rate below 70 bpm for ten
days").

In the following we describe the main features of the
language S-WATCH-QL and also show an
application of the language to the management of data
coming from an anesthesia record.10

THE HISTORICAL RELATIONAL DATA
MODEL

Basic concepts

The relational model is the most important model?,
used in commercial database systems. A relational
database consists of a set of relations, each of which
may be represented as a table. In a table a row (called
tuple) represents a relation among a set of values. All
the values belonging to a given column are associated
with an attribute, which is made up of a name that
identifies the attribute and a domain, that specifies the
set of valid values. Recently many researchers
extended the relational model includin§ temporal
information and operators that manage it.!

Our extension can be classified as a tuple time-
stamped historical relational data model. An historical
database is composed of non-historical relations and
historical relations. Non-historical relations are
traditional relations with no time support (other than
user defined time). Historical relations contain an
additional attribute, named TIME, whose value, for
each tuple, defines the valid time of the values of the

other attributes. A tuple’s valid time represents the

time during which the information contained in the
tuple is considered to be valid.8

An instant defines a position on the temporal axis. It
can be defined by values specified with different
granularities (years, months, days,...).

An instant has no duration; an instant defined with a
certain level of granularity has an associated
indeterminacy. Intervals are defined by couples of
instants that indicate their start and end. Start and end
can be defined at different levels of granularity: an
interval is, for example, “from 1990 to April 1996”
(1990 .. 1996:4 in the adopted notation). Intervals are
closed; this means that start and end are included: the
interval 1996:1:15..1996:1:18 includes both January,
15 and January, 18. An interval defined with equal
start and end, like 1996:1 .. 1996:1 indicates an
interval, lasting in this case the whole month of
January. By using a special operator it is possible to
assign to an interval type variable i, a value made up
of two equal instants (by either value or granularity
level), that represents an interval with zero duration
(in contrast with the default behavior of closed
intervals, with starting and ending instants having the
same value, that represent a given non zero duration).
We call this a degenerate interval.®

Traditionally there are two ways to define the valid
time of an historical relation: as a time instant (a
position on the time axis) and as a time interval, a set
of contiguous instants.!! Generally a historical
relation can contain valid times that are all instants or
all intervals.> 2 In our model, instead, the attribute
TIME (that defines a tuple’s valid time) is of type
interval, then it works good with interval valid times;
moreover, by defining the attribute TIME as a
degenerate interval, it is possible to represent
instantaneous valid times.

THE QUERY LANGUAGE
S-WATCH-QL

We extended only the SQL SELECT statement, that
is used for querying data. Insertion, deletion and
update are possible by standard SQL statements (even
if not in a direct way). Besides, usually, the end user,
in inserting, updating and deleting data, manages the
clinical database by suitable graphical interfaces.3 12

Functions and predicates

We call granule an instant value, that is (of course)
associated to a granularity level. A chronon is an
instant defined with the finest granularity available in
the system (in this implementation the finest level is
“seconds”).8 In tab. I are shown the functions that
operate on temporal data types, i.e. instants and
intervals.

528

Function Description
instant .. instant — interval | Interval constructor
NOW(— instant Actual time
STARTCHRON(instant) Extraction the first
— instant chronon of an

instant
ENDCHRON(instant) —> Extraction of the
instant last chronon of an
instant
CONVGRANG@(instant) Granularity
— instant conversion
GETGRAN(instant) — Granularity
number extraction
DEGEN(instant) — interval | Degenerate interval
constructor

PRED(instant,number) — Predecessor
instant
SUCC(instant, number) — Successor
instant
PRED @ (instant, number) Predecessor at
— instant granularity
SUCC@(instant, number) Successor at
— instant granularity
CONVGRAN(number, Granularity
instant) — instant conversion
ELAPSED@(interval) > Interval duration
number
START((interval) — instant Extraction of the

starting element
END(interval) — instant Extraction of the

ending element
IUNION(interval,interval) — Interval union
interval
IINTERSECTION(interval, | Interval intersection
interval) — interval

Tab. I. Temporal functions.

Some suitable predicate are defined for instants and for
intervals. Equality (symbol “=*) either between pairs
of instants or between pairs of intervals requires
equality of respective granularity levels. The
EQUAL @ predicate checks equality between instants
at a given granularity level @. We said that defining
an instant i through a granule involves a certain
indeterminacy; the entity that is related to the instant
i is, in fact, located somewhere between
STARTCHRON(i) and ENDCHRON(i). Sorting
relationships between instants (e.g. a < b) are true if
and only if they are true for every couple of chronons
belonging to the operands: a < b, then, means
ENDCHRON(a) < STARTCHRON(b). The same
principle is applied to intervals. Degenerate intervals
have zero duration, so the behavior of the predicates
that operate over intervals consider the case of
degenerate intervals and behave accordingly (for
example a degenerate interval can never CONTAIN a

non degenerate interval, even if the first one is defined
at a coarser granularity level).

The SELECT statement

The new SELECT statement includes the additional
clauses VALID, WHEN, COALESCE ON,
EXPAND BY, MOVING WINDOW, some new
keywords, functions and predicates. Here’s the
simplified syntactical structure of the SELECT
command:

SELECT [COALESCED]
[VALID]

[INTO]

FROM

[WHERE 1

[WHEN]
[COALESCE ON]
[EXPAND BY]
[MOVING WINDOW]
[GROUP BY]
[HAVING]

[ORDER BY]

The result of a correct SELECT statement is always a
relation. The name of the resulting relation can be
specified in the INTO clause.

The SELECT clause. This clause contains a list
of valid expressions, that may be simple attributes or
complex expressions built on functions, predicates,
attributes and constants. These expressions will
compute the values of each tuple belonging to the
resulting relation. Together with each expression a
name may be present that will be assigned to the
related attribute.

The VALID clause. The resulting relation can be
historical or non historical and that depends on the
presence of the VALID clause and on its arguments.
Here a temporal expression (an expression that gives
an instant or an interval data type result) must be
present. This expression may be built on whatever
time-related attribute and function, and its result
defines the valid time of each tuple (the result is
assigned to the TIME attribute).

The INTO clause is for defining the name of the
resulting relation.

The FROM clause is used to specify the list of all
the relations that will be involved by the SELECT
statement.

The WHERE clause. Here can be formulated a
criterion used to define the set of tuples to operate on.
The criterion is in the form of a predicate; tuples for
which the predicate will result TRUE will be
included, other ones will be discarded. Temporal data
(instants and intervals), functions and predicates
cannot be present in this clause. If needed, a predicate
formed on either temporal or atemporal attributes,

529

functions and predicates, can be present in the WHEN
clause.

The WHEN clause. This clause works like the
WHERE clause. Here a valid predicate, made up of
temporal and atemporal expressions, can be present. If
a predicate p can be split into an expression such as
“pa AND p;”, where pg is an atemporal expression
and p; is a temporal expression, the query
performance will be better if p, is placed into the
WHERE clause and p; is placed into the WHEN
clause.

The COALESCE clause. Let's say that two
tuples are atemporally equal if all the corresponding
values are equal, excluding from this comparison the
attribute TIME. The purpose of this clause is to
coalesce into one final tuple groups of tuples that are
atemporally equal and that have overlapping or
meeting values of the TIME attribute. The valid time
of the final tuple will be the union of all the valid
times of the involved tuples.

The EXPAND BY clause. Inside this clause a
specific level of granularity @ is defined. A given
interval can contain a given set of instants defined
with a certain level of granularity @. This clause
divides a valid time into a set of intervals, each of
them lasting one single instant defined at the
granularity @. Every original tuple is replicated into
a set of tuples atemporally equal to the original one,
and time stamped with an interval corresponding to a
single instant defined at the granularity @. If the valid
time of an original tuple and the level of granularity
@ satisfy certain conditions, the valid time of the
original tuple is equal to the union of the valid times
of the relative resulting tuples.

The GROUP BY clause. If we consider only a
subset of the attributes that characterize two tuples
belonging to the same relation, they can be considered
to be equal. It is often useful to group tuples that
share the same values of a subset of their attributes.
By using the GROUP BY clause, such groups of
tuples generate an unique tuple that can contain
results coming from aggregate functions: these are
special functions that operate over all the set of tuples
belonging to the group, like MAX() or AVG(), to
evaluate, respectively, the maximum value and the
average on collections of numeric values.

The MOVING WINDOW clause. This clause
defines the behavior of the moving window operator.®
The purpose of this operator is to scan a temporally
sorted relation and to group all the tuples that fall
within a time interval of a given duration. For every
group of tuples a single tuple is generated. This tuple
can contain results that come from aggregate
functions. Depending on the temporal positions of
tuples and on the size of the window, every tuple may
belong to one or more groups (and can contribute to
the generation of different resulting tuples). To select
only some of the resulting tuples, the HAVING

clause can be used. The principle we adopted is that
operations must not depend on special attribute's
semantics®, such as time invariant keys®: we defined
the construct "MOVING WINDOW ... GROUP BY
<attributes>" to group tuples that have the same
values for a set of attributes (to group, for example,
data related to the same patient). Another useful
construct is "MOVING WINDOW n TUPLES" that
allows us to define a window that includes a given
constant number of tuples. That wouldn't be possible
by a window with a constant temporal size, if tuples
are not equally temporally spaced. Through a
"MOVING WINDOW 2 TUPLES" clause it is
possible to build states on couples of consecutive
events. The ALLTIME and ANYTIME options
permit to group only tuples whose valid time is,
respectively, completely or partially contained into
the moving window.

The HAVING clause is used to select only a
subset of the tuples resulting from a grouping
operation such as GROUP BY, or MOVING
WINDOW. A valid predicate (that can contain
aggregate functions) must be present in this clause.
The ORDER BY clause is used to define an
ordered set of attributes and directions (ascending or
descending) on which the resulting tuples will be
sorted.

QUERYING A CLINICAL DATABASE

The relational temporal data model described above
has been applied to a clinical database that comes
from an anesthesia clinical record!. The information
contained here concerns mainly actions made on the
patient (induction, intubation, and so on),
administration of drugs, gases and liquids, and
monitoring of physiological parameters. All these
data have a certain position on the temporal axis, that
is very important to discover mutual relationships
among events and conditions and to classify the
patients according to different physiological
behaviors.

Anesthetic records are usually of limited duration,
event if a big amount of data is collected during an
intervention, and each data element is reported as soon
as it is obtained, already arranged by time on cartesian
axes. In this situation it is very important to have at
disposal temporal languages like S-WATCH-QL, in
order to be able to identify, with ad-hoc off-line (wrt
the intervention moment) queries, some different
cathegories of patients, by the construction of more
abstract information related to specific temporal trends
of patient's data.2

For example, an important parameter, related to the
respiratory system, often monitored during anesthesia
is end-tidal CO3 (ETCO2), that measures the
percentage of CO at the end of exhalation. A sudden

530

fall in the ETCO2 may be related to cardio-circulatory
problems.

The following query is one of the queries needed to
discover the exit from a steady state of ETCO2. Let’s
say that a steady state is characterized by a time
interval of ten minutes, during which the difference
between the minimum and maximum values of
ETCO?2 is no more than 1%. We have a relation
etco2 that contains all the measures of ETCO2
pertaining to different operations. The following
query constructs a relation state that contains tuples
describing a set of steady states.

SELECT AVG(e.etco2) average,
MIN(e.etco2) minimum,
MAX (e.etco2) maximum,
e.operation_id
VALID e.TIME, WINDOW
INTO state
FROM etco2 e
MOVING WINDOW 10 minutes
GROUP BY e.operation_id
HAVING
MAX (e.etco2)
AND
COUNT (e.etco2)>= 8

- MIN(e.etco2) <=1

In the above query, the GROUP BY keyword belongs
to the MOVING WINDOW clause and allows us to
group data belonging to the same operation. The
condition "COUNTY(...) >= 8" avoids the user to
consider temporal windows not containing a sufficient
number (in this case 8) of ETCO2 measurements.
The next step is to detect a sudden fall in the ETCO?2.
We define a sudden fall of ETCO2 as a difference
equal or greater than 2% between the ETCO2 value
related to a steady state (the average on the state
period) and an ETCO2 measurement at the instant
immediately following the end of the steady state.
This is done by the following query.

SELECT s.average, e.etco2 new,
START (e.TIME) fall_instant

VALID s.TIME

INTO fall

FROM state s, etco2 e

WHERE s.average-e.etco2 >= 2 AND
s. operation_id = e.operation_id

WHEN ELAPSEDMINUTES
(END(s.TIME) ..START (e.TIME))=2

The above query computes a relation containing the
description of only the steady states followed by a
sudden fall in the ETCO2. The schema of the new
historical relation fall is composed by the attribute
identifying the steady state (s.average and the valid
time s.TIME) and by the attributes identifying the
sudden fall (the ETCO2 measurement after a steady

state and the temporal location of this measurement).
The ELAPSEDMINUTES function must be equal to
2 because bounds are enclosed in the interval's
duration.

SYSTEM ARCHITECTURE

We implemented S-WATCH-QL, by Visual C++, on
PC-IBM compatible computers with MS Windows
environment. The system allows the user to input
queries in a textual format and to examine the
resulting relations, rendered in a tabular format in
separate windows. The system uses an external SQL
interpreter module: by suitable drivers the system is
allowed to access data stored by different database
systems.!3

It is not possible to convert a S-WATCH-QL
statement into an equivalent set of SQL statements.
We use the SQL interpreter mainly as a low level data
access module, and for data ordering, cartesian product
and atemporal selection functionalities. Evaluation of
expressions, predicates, atemporal and temporal
clauses requires internal processing. The activity of
evaluation of a S-WATCH-QL statement, that
requires a complex system architecture, follows these
steps: a) syntactic analysis and checking; b)
translation in an executable form; c) execution (by
using also SQL interpreter); d) presentation of results.

DISCUSSION AND CONCLUSIONS

Some relevant features characterize S-WATCH-QL, in
respect with other contributions in medical
informatics and database literature.!-5.9

e Historical relations have homogeneous valid
times: either states or eventsS can be mixed inside
the same relation by using intervals and degenerate
intervals.

e Managing of temporal attributes with varying and
mixed granularity is allowed: a temporal attribute
can contain a value that can be updated by a value
at a different granularity level; an interval can be
defined by starting and ending instants given at
different granularity levels; a relation can contain
different data temporally located at different
granularity levels. S-WATCH-QL is not able to
manage indeterminacy not related to calendar date
granularities, like in I 34,

e It is possible: a) to convert relations from non-
historical to historical and vice-versa; b) to directly
and simultaneously access to non-historical and
historical relations; c) to compute valid times by
user-defined expressions (VALID clause).

e The COALESCE, EXPAND BY and MOVING
WINDOW clauses support variable granularity and
degenerate intervals.

e The MOVING WINDOW CLAUSE has been
extended (MOVING WINDOW ... GROUP BY,

531

MOVING WINDOW ... TUPLES, ALLTIME
AND ANYTIME OPTIONS).

Acknowledgments

This work was partially supported by contributions
from: MURST Italian National Project for Medical
Informatics; Department of Biomedical Engineering of
the Politecnico di Milano; CNR’s Centro Studi per la
Teoria dei Sistemi. We thank also dr. Bruno Brunetti and
dr. Stefano Fattore, for their help in focusing the clinical
problem.

References

1. Das AK, Musen MA. A temporal query system
for protocol directed decision support. Methods of
information in medicine, 358-370, 33, 1994.

2. Shahar Y. A knowledge-based method for
temporal abstraction of clinical data. Ph. D.
dissertation in medical information sciences,
Stanford University 1994.

3. Combi C, Pinciroli F, Musazzi G, Ponti C.
Managing and displaying different time
granularities of clinical information. In: Ozbolt,
JG (cd.), 18. Symposium on Computer
Applications in Medical Care. Hanley & Belfus.
Philadelphia 1994; 954 - 958.

4. Combi C, Pinciroli F, Cavallaro M, Cucchi G.
Querying temporal clinical databases with
different time granularities: the GCH-OSQL
language. Symposium on Computer
Applications in Medical Care. 19, Philadelphia,
Hanley & Belfus, 1995; 326 - 330.

5. Sarda NL. HSQL: a Historical Query Language.
in 12. 110-138.

6. Snodgrass RT. The TSQL2 temporal query
language. The TSQL2 Language Design
Committee Kluwer Academic Publishers,
Boston, 1995.

7. Date CJ. A guide to the SQL standard. Addison
Wesley 1989.

8. Jensen CS, Clifford J, Elmasri R, Gadia SK et
al. A consensus glossary of temporal database
concepts SIGMOD Record, vol. 23, 52-64,1994.

9. Navathe SB, Ahmed ER. Temporal extensions to

the relational model and SQL in 12. 92-109.

Barash PG, Cullen BF, Stoelting RK. Clinical

anesthesia. J.B. Lippincott Company 1992.

Tansel AU, Clifford J, Gadia S, Jajodia S, Segev

A, Snodgrass R. Temporal databases: theory,

design and implementation. Benjamin

Cummings, Redwood City, CA, 1993.

Cousins S, Kahn M, Frisse M. The display and

manipulation of temporal information. SCAMC

1989, 76-80.

Kruglinski DJ. The Visual C++ manual.

McGraw Hill, New York, 1994 (in Italian).

10.
11.

12.

13.

